Thiols and disulphides can aggravate peroxynitrite-dependent inactivation of α_1 -antiproteinase

Matthew Whiteman, Barry Halliwell*

Neurodegenerative Disease Research Centre, King's College London, Manresa Road, London SW3 6LX, UK

Received 25 July 1997

Abstract Peroxynitrite (ONOO-) is a cytotoxic species formed in vivo. There is considerable interest in the development of ONOO" 'scavengers' as therapeutic agents; several thiols have been suggested to fulfil this role. One protein inactivated by ONOO is α_1 -antiproteinase ($\alpha_1 AP$), the major inhibitor of serine proteinases in human body fluids. At low thiol:ONOOconcentration ratios, several thiols (captopril, penicillamine, cysteine, cystine and penicillamine disulphide) aggravated inactivation of α_1AP by ONOO⁻, whereas GSH, GSSG, homocysteine, ergothioneine, N-acetylcysteine, lipoate and dihydrolipoate did not. We suggest that sulphur-containing radicals are produced by reaction of certain thiols/disulphides with ONOO or ONOO derived products and could mediate biological damage, including inactivation of α_1 AP. This must be considered in attempts to use thiols as 'peroxynitrite scavengers'. © 1997 Federation of European Biochemical Societies.

Key words: Peroxynitrite; α_1 -Antiproteinase; Thiol; Disulfide; Thiyl radical; Homocysteine

1. Introduction

Although the free radical gas nitric oxide (nitrogen monoxide, NO*) has many important physiological functions, its production in excess may contribute to the pathology of several diseases [1–3]. Part of the toxicity of NO* involves its fast [4] reaction with $O_2^{\bullet-}$ to give peroxynitrite, ONOO $^-$.

 $O_2^{\bullet-} + NO^{\bullet} \rightarrow ONOO^-$

At pH 7.4, ONOO⁻ protonates and decomposes by a series of complex reaction pathways: addition of ONOO⁻ to biological systems can result in peroxidation of lipids, oxidation of methionine and -SH residues in proteins, depletion of antioxidants, displacement of metals from metalloproteins, DNA oxidation and nitration, and nitration of protein tyrosine residues (reviewed in [1,5,6]).

There is therefore considerable interest in the design of peroxynitrite 'scavengers' for therapeutic use [3]. Peroxynitrite and/or its breakdown products react with many -SH compounds, including GSH and penicillamine [5,7–12], whereas their reactions with disulphides appear generally slower [13], although lipoic acid is an exception [12]. In the present paper, we show that certain thiols and disulphides, at low concentrations relative to those of ONOO⁻, can aggravate damage to a protein caused by ONOO⁻ addition. The protein investigated is α_1 -antiproteinase, a physiologically important protein that is the major inhibitor of serine proteases (such as

elastase) in human body fluids. α_1 -Antiproteinase has already been shown to be inactivated upon addition of ONOO⁻ in vitro [14]. α_1 -Antiproteinase is inactivated at sites of inflammation in vivo [15], and attack by ONOO⁻ provides a plausible explanation of the inactivation of α_1 -antiproteinase in the inflamed rheumatoid joint [8].

2. Materials and methods

2.1. Reagents

N-Succinyl (ala)₃ *p*-nitroanilide (SANA), elastase (E0258), α_1 -antiproteinase (A9024), thiols, disulphides, D,L-tyrosine and all other reagents were from Sigma Chemical Corp., London, UK, except that lipoic and dihydrolipoic acids were a gift from Asta Medica, Germany. Peroxynitrite was synthesised as described in [1]. Concentrations of stock ONOO⁻ were re-determined before each experiment at 302 nm using a molar absorption coefficient of 1670 cm⁻¹ M⁻¹ [1]. Concentrations of 250–300 mM were usually obtained.

2.2. Analysis of nitrotyrosine

Nitration of tyrosine on addition of peroxynitrite was measured by HPLC as described in [13].

2.3. α_1 -Antiproteinase inactivation

Elastase and α_1 -antiproteinase (α_1AP) activities were measured essentially as described in [16]. α_1AP was dissolved in phosphate-buffered saline, pH 7.4 (140 mM NaCl, 2.7 mM KCl, 16 mM Na₂HPO₄, 2.9 mM KH₂PO₄) to a concentration of 4 mg/ml and elastase in the same buffer to 5 mg/ml. The volume of α_1AP needed to inhibit elastase 80-90% (typically 60-70 µl) was added to buffer (500 mM K₂HPO₄-KH₂PO₄ pH 7.4) with or without 0.1 ml of thiol/disulphide to be tested to give a volume of 0.945 ml (final α_1AP concentration 0.3 mg/ml) and incubated in a water bath at 37°C for 15 min, when peroxynitrite (typically 5 µl) was added to give a final concentration of 0.5 mM. The sample was vortexed for 10 s and incubated for 5 min. Then elastase (usually 50 µl) was added and the mixture incubated for 15 min. This was followed by addition of 2.0 ml of buffer and incubation at 37°C for a further 15 min. Finally, 0.1 ml of elastase substrate (SANA) was added and the rate of reaction followed at 410 nm for 30 s. A similar procedure was followed for inactivation of α_1AP by hypochlorous acid (HOCl); α₁AP was incubated with HOCl (10 μM) for 60 min since under these reaction conditions the degree of inactivation was similar to that produced by 0.5 mM ONOO-5 min incubation. HOCl was prepared fresh before use and its concentration determined, both as described as in [17].

3. Results

3.1. Inactivation of $\alpha_1 AP$ by $ONOO^-$ addition

Addition of ONOO⁻ to $\alpha_1 AP$ at pH 7.4 causes loss of its elastase-inhibitory capacity [13,14]. The reaction is complete within 5 min and the extent of inactivation depends upon peroxynitrite concentration; 0.5 mM was chosen on the basis of previous studies to achieve a substantial, but not complete, inactivation [13]. Previous studies [13] have shown that other constituents of the ONOO⁻ preparation [1] do not contribute to the inactivation.

^{*}Corresponding author. Fax: (44) (171) 333 4949.

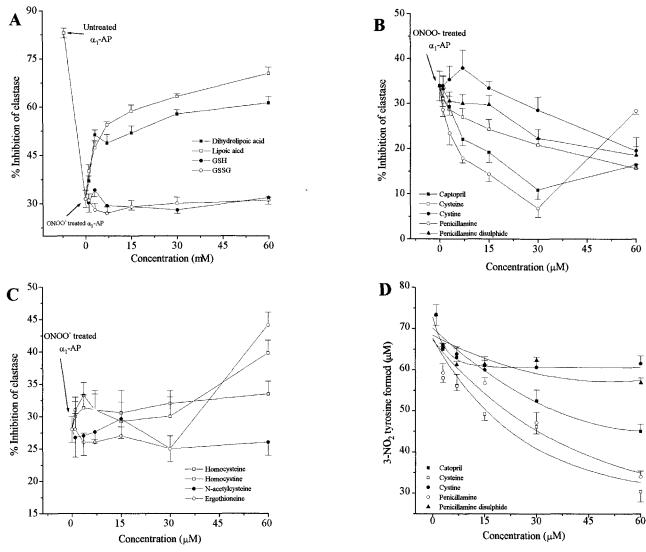


Fig. 1. Effect of various compounds on the inactivation of α_1AP by peroxynitrite in a strongly buffered solution at pH 7.4. Concentrations given on the x-axis are the final concentrations in the first reaction mixture (containing α_1AP and buffer). Results are mean \pm S.E., $n \ge 4$. Before treatment with ONOO⁻, the α_1AP inhibited elastase by $85 \pm 4\%$ (A). A: No effect of GSH or GSSG on inactivation; protection by lipoic acid and dihydrolipoate. B: Aggravation of inactivation by low concentrations of captopril, penicillamine, cysteine, cystine and penicillamine disulphide. The scale on the x-axis has been expanded to make the results clearer. C: No effect of homocysteine, homocystine, N-acetylcysteine or ergothioneine (scale also expanded). D: Effect of some of the above compounds on the nitration of tyrosine by ONOO⁻. No stimulation of nitration was shown by any compound.

3.2. Aggravation of ONOO⁻-dependent α_1AP inactivation by certain thiols and disulphides

Fig. 1 shows the effect of adding low concentrations of thiols and disulphides. Captopril, penicillamine, cysteine, cystine and penicillamine disulphide reproducibly aggravated $\alpha_1 AP$ inactivation by ONOO⁻ (Fig. 1B). By contrast, homocysteine, dihydrolipoate, ergothioneine, lipoic acid, GSH, GSSG and *N*-acetylcysteine at similar concentrations did not (Fig. 1A,C). Indeed, dihydrolipoate and lipoate were protective (Fig. 1A).

Control experiments showed that none of the thiols/disulphides had any direct effect on elastase, or on the ability of $\alpha_1 AP$ to inhibit elastase, i.e. they do not interfere with the assay procedures. If any of the thiols or disulphides were added to the reaction mixture *after* 5 min incubation of $\alpha_1 AP$ with ONOO⁻, they had no effect (Fig. 2A). Hence these compounds cannot alter the residual activity of $\alpha_1 AP$ after

damage by ONOO⁻. Incubation of the thiols or disulphides with ONOO⁻ for 5 min before adding α_1AP gave no observable inactivation of α_1AP subsequently added (Fig. 2B), except for a small effect in the case of penicillamine. Hence the products of reaction of thiols/disulphides with ONOO⁻ that cause inactivation of α_1AP do not persist in the reaction mixture.

3.3. Lack of effect of thiolsldisulphides on nitration of tyrosine by ONOO⁻

Addition of peroxynitrite to cells and tissues leads to nitration of tyrosine residues [1]. Hence another assay often used to assess peroxynitrite 'scavengers' in vitro is to examine their effect on tyrosine nitration [1,8,18]. None of the thiols or disulphides at concentrations that aggravated $\alpha_1 AP$ inactivation stimulated the nitration of tyrosine. Either they had no effect (cystine, penicillamine disulphide) or they inhibited ty-

rosine nitration (captopril, ergothioneine, cysteine, penicillamine) (Fig. 1D).

3.4. Effect of thiols/disulphides on inactivation of α_1AP by HOCl

Another agent known to inhibit $\alpha_1 AP$ in vitro is HOCl [19]. None of the compounds that aggravated $\alpha_1 AP$ inactivation in the presence of ONOO⁻ did so in the presence of HOCl: they either protected or had no effect (Fig. 3). Our data are consistent with previous literature reports that thiols and certain disulphides are HOCl scavengers [17,20,21].

4. Discussion

Our data show that certain thiols and disulphides at low concentrations can aggravate the inactivation of $\alpha_1 AP$ upon addition of ONOO⁻. By contrast, addition of any of the thiols (or of lipoic acid) at concentrations greater than 200 μ M decreased inactivation of $\alpha_1 AP$ (data not shown, as in agreement with previous literature reports [8,12,13]). Our data show the importance of testing 'scavengers' over a wide concentration range.

What mechanism can account for these effects? The thiols/ disulphides had no direct effect on $\alpha_1 AP$ or elastase. Addition of them to $\alpha_1 AP$ already inactivated by ONOO⁻ did not restore or further diminish activity (Fig. 2A). Hence the effects must involve interaction of the thiols/disulphides with ONOO⁻ or ONOO⁻-derived species. However, any damaging products that result do not survive in the reaction mixture when ONOO⁻ is preincubated with thiols/disulphides before $\alpha_1 AP$ addition (Fig. 2B).

Several thiols are known to generate thiyl and thiyl-derived radicals upon exposure to ONOO⁻ [5,9–11]. It is also known that penicillamine-derived sulphur radicals can inactivate α₁AP [22]. It thus seems logical to propose that ONOO-dependent formation of sulphur radicals from certain thiols/ disulphides is the explanation of aggravated $\alpha_1 AP$ inactivation. At higher levels of thiols/disulphides, the sulphur radicals responsible may well disappear by further reactions with their parent compounds [23,24] rather than attacking $\alpha_1 AP$, thereby accounting for loss of the aggravating effect. A mechanism involving sulphur radicals would also explain why no aggravation of HOCl-dependent inactivation of α_1AP is observed; reaction of HOCl with GSH (and presumably other thiols or disulphides) is reported not to generate free radicals [25]. The lack of stability of the species involved (Fig. 2B) is also consistent with free radical formation.

There is growing interest in biological damage by thiyl and oxysulphur radicals [21,23,24,26]. For example, such radicals have been suggested to account for the autoimmunity often seen in arthritis patients treated with penicillamine [22]. If our proposed explanation is correct, then there must be fundamental differences in the ability of sulphur radicals derived from different thiols/disulphides to inactivate $\alpha_1 AP$: cysteine, captopril, cystine, penicillamine and penicillamine disulphide aggravated $\alpha_1 AP$ inactivation, but GSH, ergothioneine and homocysteine did not. Of course, sulphur radicals are able to damage biological targets other than $\alpha_1 AP$ [26,27]. The use of $\alpha_1 AP$ may thus represent a useful 'screen' for potential toxic effects of radicals derived by interaction of ONOO– and/or ONOO– derived species with putative 'ONOO– scavengers' proposed as therapeutic agents.

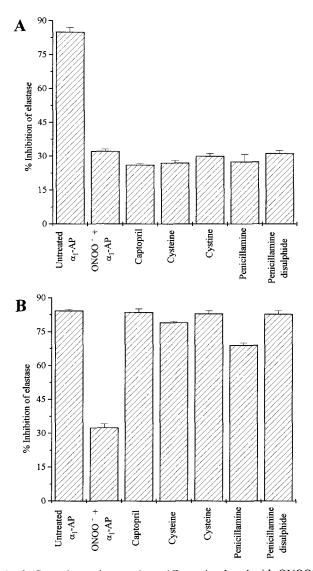


Fig. 2. Control experiments. A: α_1AP was incubated with ONOO and buffer for 5 min, then thiols/disulphides were added to give a 30 μ M final concentration followed by a further 30 min incubation. None of the compounds restored or further decreased the elastase-inhibitory capacity of α_1AP . B: Peroxynitrite was incubated with thiols/disulphides (30 μ M) for 5 min, then α_1AP was added followed by a further 30 min incubation. There was no effect on the elastase-inhibitory capacity of α_1AP , except for a small decrease in the case of penicillamine. Results for both panels are mean \pm S.E., n=4.

Another question is whether aggravation of damage to α_1AP by this mechanism could occur in vivo. This protein is inactivated at sites of chronic inflammation, e.g. in the inflamed rheumatoid joint [15], in which ONOO⁻ is generated at high levels as evidenced by measurements of nitrotyrosine [28] and NO_2^-/NO_3^- [29]. Levels of cysteine and cystine in human body fluids are normally in the range of 8–10 and 90 μ M respectively [30], and typical body fluid levels of penicillamine in patients taking this drug are 20–50 μ M [31]. These levels are comparable to those shown here to aggravate the effects of ONOO⁻ on α_1AP Of course, we have used a high ONOO⁻ concentration to achieve substantial inactivation of α_1AP in a short time and allow accurate measurements. Aggravation of ONOO⁻-dependent α_1AP inactivation

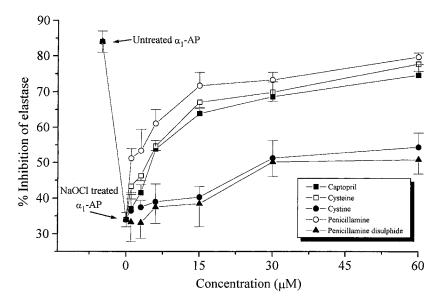


Fig. 3. Effect of various thiols/disulphides on the inactivation of α_1AP by HOCl at pH 7.4. No aggravation of inactivation by HOCl was observed by any of the thiols or disulphides mentioned in this paper.

is still observed at lower ONOO $^-$ concentrations (tested down to 50 μ M). Hence it might be feasible in vivo, although more work is needed to establish this.

Acknowledgements: We are grateful to the Arthritis and Rheumatism Council for research support, including the provision of a studentship to Matthew Whiteman.

References

- Beckman, J.S., Chen, J., Ischiropoulos, H. and Crow, J.P. (1994) Methods Enzymol. 233, 229–240.
- [2] Moncada, S. and Higgs, A. (1993) New Engl. J. Med. 329, 2002– 2011.
- [3] Darley-Usmar, V., Wiseman, H. and Halliwell, B. (1995) FEBS Lett. 369, 131–135.
- [4] Huie, R.E. and Padmaja, S. (1993) Free Radical Res. Commun. 18, 195–199.
- [5] Pryor, W.A. and Squadrito, G.L. (1995) Am. J. Physiol. 268, L699–L722.
- [6] Halliwell, B. (1997) FEBS Lett. (in press).
- [7] Moro, K.A., Darley-Usmar, V.M., Goodwin, D.A., Read, N.G., Zamora-Pino, R., Feelish, M., Radomski, M. and Moncada, S. (1994) Proc. Natl. Acad. Sci. USA 91, 6702–6706.
- [8] Whiteman, M., Kaur, H. and Halliwell, B. (1996) Ann. Rheum. Dis. 55, 383–387.
- [9] Karoni, H., Hogg, N., Frejaville, C., Tordo, P. and Kalyanaraman, B. (1996) J. Biol. Chem. 271, 6000–6009.
- [10] Shi, X., Rojanasakul, Y., Gannett, P., Liu, K., Mao, Y., Daniel, L.N., Ahmed, N. and Safiotti, U. (1994) J. Inorg. Biochem. 56, 77–86
- [11] Gatti, R.M., Radi, R. and Augusto, A. (1994) FEBS Lett. 348, 287–290.
- [12] Whiteman, M., Tritschler, H. and Halliwell, B. (1996) FEBS Lett. 379, 74–76.

- [13] Whiteman, M. and Halliwell, B. (1996) Free Radical Res. 25, 275–283.
- [14] Moreno, J.J. and Pryor, W.A. (1992) Chem. Res. Tox. 5, 425– 431.
- [15] Chidwick, K., Winyard, P.G., Zhang, Z., Farrell, A.J. and Blake, D.R. (1991) Ann. Rheum. Dis. 50, 915–916.
- [16] Evans, P.J., Cecchini, R. and Halliwell, B. (1992) Biochem. Pharmacol. 44, 981–984.
- [17] Wasil, M., Halliwell, B., Moorhouse, C.P., Hutchinson, D.C.S. and Baum, H. (1987) Biochem. Pharmacol. 36, 3847–3850.
- [18] Ischiropoulos, H., Zhu, L., Chen, J., Tsai, M., Martin, J.C., Smith, C.D. and Beckman, J.S. (1992) Arch. Biochem. Biophys. 298, 431–437.
- [19] Weiss, S.J. (1986) Acta Physiol. Scand. Suppl. 548, 9-37.
- [20] Haenen, G.R.M.M. and Bast, A. (1991) Biochem. Pharmacol. 42, 2246–2248.
- [21] Aruoma, O.I., Halliwell, B., Hoey, B.M. and Butler, J. (1989) Free Radical Biol. Med. 6, 593–597.
- [22] Aruoma, O.I., Halliwell, B., Butler, J. and Hoey, B.M. (1989) Biochem. Pharmacol. 38, 4353–4357.
- [23] Schoneich, C., Bonifacic, M. and Asmus, K.D. (1989) Free Radical Res. Commun. 6, 393–405.
- [24] Schoneich, C. (1995) Methods Enzymol. 251, 45-55.
- [25] Folkes, L.K., Candeias, L.P. and Wardman, P. (1995) Arch. Biochem. Biophys 323, 120–126.
- [26] Wardman, P. and von Sonntag, C. (1995) Methods Enzymol. 251, 31-45.
- [27] Stamler, J.S., Osborne, J.A., Jaraki, O., Rabbani, L.E., Mullins, M., Singel, D. and Loscalzo, J. (1993) J. Clin. Invest. 91, 308– 318.
- [28] Kaur, H. and Halliwell, B. (1994) FEBS Lett. 350, 9-12.
- [29] Farrell, A.J., Blake, D.R., Palmer, R.M.J. and Moncada, S. (1992) Ann. Rheum. Dis. 51, 1219–1222.
- [30] Anderson, A., Lingren, A. and Hultberg, B. (1995) Clin. Chem. 41, 361–366.
- [31] Baggot, J.E., Morgan, S.E., Vaughan, W.H. and Hine, R.J. (1992) Biochem. J. 282, 197–202.